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Normal modes of director fluctuations in a nematic droplet

J. R. Kelly and P. Palffy-Muhoray
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242
(Received 3 October 1996

Director fluctuations in nematic liquid crystals are readily analyzed in terms of the normal modes of the
director field. In this paper, we examine the dynamics of fluctuations in the radial director field of a spherical
nematic droplet in terms of its normal modes. We find independent twist-bend and splay-bend modes and
consider thermal excitations. The results may be useful for understanding light scattering by polymer dispersed
liquid crystals.[S1063-651X97)06204-1

PACS numbegps): 61.30.Cz

I. INTRODUCTION II. DIRECTOR DYNAMICS
IN A NONPLANAR GEOMETRY

The scattering of light by condensed matter is due to spa- In the Oseen-Frank formalisf8], the free energyF of a
tial variations of the dielectric permittivity. In nematic liquid nematic liquid crystal depends on distortions of the director
crystals, this is caused primarily by spatial variations of thefield n(r). Explicitly,
order parameter. These inhomogeneities may be caused by
external fields(such as surface interactionsnd by thermal J,,_.:f F(R)d® 1)
fluctuations. Since director fluctuations are Goldstone '
modes, long-wavelength fluctuations with large amplitudes
are excited even at modest temperatures, and these are M_]ere the bulk free-energy denskyhas the form
sponsible for the strong scattering and turbid appearance of . 1 A . 1 . .
bulk nematic liquid crystals. Light scattering by bulk nemat- F(n)= SKu(V: n)%+ 5 Ka(n-Vx n)%+ 5 Ka(nX VX n)>2
ics has been studied extensivély2,4—§. The spectrum of @)
director fluctuations in a planar geometry has been examined
[4], with good agreement between theory and experimentorresponding to the canonical deformations of splay, twist,
More recently, director fluctuations have been analyzed iyq bend:n is a unit vector. To obtain the equations of
the case of a nematic liquid crystal confined to a cylindricalmotion, it is necessary to describe the generalized thermody-
capillary [5]. namic force acting on the director. To this end, we write the

Polymer dispersed liquid crystdPDLC) materials consist  frea energy in terms of the unnormalized figle-nn and
of micrometer-sized nematic droplets dispersed in & polymegnsider variations of the unnormalized field(r) such that
matrix. In the droplets, the director field is spatially non- ¢ yanishes on the sample  boundaries. Then
“h”'forfn* andrll?)ht scatter;]ng b¥ these me;[_erlals ]lcsrcilue bIOth ' =Ry+ (1 —Rgho) €, Wheref, is an arbitrary director field
the mismatch between the refractive indices of the polymer,,  \yhich variations are consideréds the unit tensor of

and the liquid crystal and to the spatial inhomogeneities o ~on o .
the director field. Thermally excited director fluctuations arerank 2, andnghg is a dyad. Substitution into Eq1) gives

particularly important; these contribute significantly to dy- -
namic light scatteringi6]. In order to describe dynamic light F= J—'o—f h(ng)-€ d®r, 3
scattering by PDLCs, it is essential to understand the dynam-

ics of director fluctuations. In this paper we discuss directog,vhere'ﬁ: _

J e Herical o drolet. with ot | (8F/én)(1—nn). Sincee is an unconstrained
yhamics in a spherical nematic dropiet, with strong normavariation, we regardh as the thermodynamic force acting on

anchoring at the surface, that is, with the director radially,[he director. We note that the functional derivative

aligned everywhere in the ground state. Although other - . o
ground-state configurations are possifi the radial con- SoF/én=—h, whereh is the molecular field introduced by de

figuration is realized frequently and it is amenable to simple®ennes[2] and h=h—(h-n)n. The quantityh-n may be

analysis. We ignore spatial variations in the degree of orienintérpreted as the Lagrange multiplier associated with the
tational order and describe the nematic liquid crystal in term

gonstraint than*=1. The condition for equilibrium is that
of the director rather than the order parameter tensor. W=0orh=(h-mn[2].
also ignore the effects of flow and work in the one elastic Away from equilibrium, in the absence of flow, the ther-
constant approximation. We identify the normal modes inModynamic force is balanced by a viscous force and the
such a radial nematic droplet and calculate their thermal anfdYnamics is described by
plitudes and relaxation times. This allows the description of N
dynamic light scattering by a nematic liquid crystal droplet 5_”:'5 (4)
in PDLC materials. Yo
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wherey is a viscosity coefficient. This is our starting point, 0.15

and we note that it differg3] from Ref.[2].
The free-energy density in the one-elastic-constant ap-
proximationK ;=K,=K;=K is o1
1 N2 N2 ~ 0.05
F=§K{(V-n) +(VXn)<} (5 Ol
~ "w
and h= KV?n. This gives the equation of motion for the o
director
-0.05
YN 2 (A2 ©®)
K at _0'1 L L L L el L 1 L L
0 5 10 15 20 25 30 as 40 45 50
in the one-constant approximation. x
Ill. NORMAL MODES OF A SPHERICAL DROPLET ~ FIG. 1. FunctiorRy(r)~x~"2,(x), wherex=kqr, as a func-
WITH RADIAL CONFIGURATION tion of x. Herel=5.
A. Equations of motion —1p2
We consider a spherical nematic droplet of radigswith Rpi(r)= (r_> J(Knir), 12
0

a radial static equilibrium configuratiomy=r. Fluctuations

about the equilibrium configuration are described by the field

&(r) such thatn=ny+ &. Rigid homeotropic anchoring is Where the eigenvaluie, is determined from the requirement
assumed both at the surface and at the origin, that ighatJ,(knro)=0 is thenth zero of the Bessel function. The
&(ro) = &0)=0. Substitution into Eq(6) gives the equation elementary normal modes are therefore

of motion for the decay of the fluctuations,

y 98 Aaa oo Shim=Rai(1) Xim( 6, b) (13
51 = (V281 =Noho) = (No- Vo) & (7) pime M
Since for a normal mode in a dissipative systemand

dédl at=— él T to lowest order, this becomes

2 S =Ra(NZim(6,9), (14)
—k%26=(V?d)(l —rr)+r—25, (8)

with relaxation timesr,; = y/Kk?, . Since the relaxation time

2_ . .
wherek®= y/7K. The normal modes are the eigenfunctions;g independent ofn, the general normal modes are

of Eqg. (8). We note that- r=0 and we look for solutions of
the form 6=R(r)I', wherel is a linear combination of vec-
tor spherical harmonid®] such that its radial component is

zero. We find the solutions 3 =Rai(1) 2 [AninXim( 0,8) + BrimZim( 6, 6)1, (19)
2 1 -mY". idY" .
Ll =Xim(6, )= [1+1)L sind FY) ©) where A, and B, are arbitrary constants subject to the
requirement tha#,, is real.
and
) B. Normal mode distortions
2=2,.(0,¢) I Atk [ ¥’ é|, (10 It is convenient to separate the elementary normal modes
Im— 4£iml U, @)= —— ,
" Vid+1)L 90 sing into the scalar paR,,(r) and the vector fieldX, (6, ¢) and
) Zin(6,¢). The functionrR,(r) is shown in Fig. 1.
whereXy, andZ,, are orthonormal, an&(r) must satisfy The real contributions from the vector fields are
PR 2R l(1+1)—2 mcosne¢ R
- - 2.~ 7 " |R= r —nl m
arZ o r oor (k r2 )R 0. 11 im( 6, $)=c sing P (cos9) 6
m
The solution forR(r) is the spherical Bessel function of . dP(cos) ..
orderv=1\T(1+1)—7/4, that is, tsime¢ ——5—¢ (16
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FIG. 2. (a) Splay-bend modé&, (0, ) for =5 andm=3. (b)
Twist-bend modeX,,(8,¢) for =5 andm=3.

and

JP"(cos) ..
—0

Z{m(0,¢>)=c 90

—sinme¢

mcosng¢

sng P (cosh) ),

17

where the normalization constant

i~

The vector fieldsXp,(6,¢) and Z;,,(6,¢) are shown in
Figs. 2a) and Zb).
One can write Eq(7) as

2141 (I—m)!
Al (1+1) (1+m)!

—K18u=Ln, (18
where £6=(V28)(1—nyny) — (N V2ny) 8. Since £ is a
Sturm-Liouville operator, the elementary normal modgs
form a complete orthogonal set. It is interesting to note tha
V- [R(r)X,»]=0; hence theX,,, mode does not contribute
to the splay energy iK,(V-n)2. Similarly, no-V
X[R(r)Z,m]=0; hence the&,,, mode does not contribute to
the twist energy%Kz(ﬁVXﬁ)z. Thus there are two types of
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modes, a twist-bend modeX{,,) and a splay-bend mode
(Zm), as in the case of the planar geomgy.

C. Normal mode amplitudes

Amplitudes of the normal modes may be determined from
the equipartition theorem. For a given distortion fiddthe
free energyF is given by Eq.(3).

F=Fo— J h(No) - 8d3r. (19)
If the distortion is from an equilibrium stat@,, thenh(no)
=0, but the free energy energy may be written as

-8d3r. (20)

~[~ O
f:fo_fh(n0+§

To first order,ﬁ(ﬁo+ 5/2)=%K25, and the free energy be-
comes

F (21)

1 -
fO—EKf (L) 6d°r.

Since the normal modes form a complete orthogonal set, an
arbitrary distortioné may be expressed in terms of these as

o= nIEm Rnl(r)[AnlmXIm( 0, ¢) + BnImZIm( 0, ¢)] (22)

SinceZ&,ﬂ: —k2,8, [cf. Eq. (18)], we obtain at once for
such a deformation

K
F= ~7:0+ ZnEI:m k§|{|Anlm|2+|Bnlm|2}rg‘l12;+1(knlro)-
(23)
The equipartition theorem gives then the amplitudes

B 2kT
Krokido 1(Kniro)

|Anlm|2:|Bnlm|2 (29

For an arbitrary deformation, we note from Eg2) that

3kT
()= amire 2, [Lrokn)?].

We write this as

2y 3kT 1 25
< >_47TKron|mX§|,
where x, is the nth zero of J,(x), where

v=4l(l+1)—7/4. Although we do not have a closed-form
expression for the sum in Eq25), we conjecture that
En,|,m1/xﬁ|=c(rollmo|), wherel ,, is @ molecular length and

c is a dimensionless constant of order unity. This is analo-

bous to the case of normal modes of a gas-filled rigid sphere,

where the sum equatsy =271 1o @NdQmay IS the cutoff in

q space. This giveq 6%)=c(3kT/4mKl ), that is, the
mean-squared amplitude of the fluctuations in real space is
independent of the droplet size.
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IV. SUMMARY to be located at the center of the droplet. A more realistic

. . . ... _model, not subject to this constraint, would describe the free
We have shown that in a spherical nematic droplet, with a ) A o
n terms of the dyadn. A yet more realistic model

radial ground-state configuration, there exist two normafnergy ! mo

modes: a twist-bend modeX(,) and a splay-bend mode would use the full _o_rder parameter tensor description. A

(Z:). These may be expressed simply in terms of vectoptudy of the tractability of these models is currently under

spherical harmonics; the relaxation time for both modes is &/2Y-

function of the mode order. The amplitudes of thermally ex-

cited modes are giyen explipitly; we conj(_ectur(_a t_hat the ACKNOWLEDGMENTS

mean-squared amplitude of director fluctuations is indepen-
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