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Normal modes of director fluctuations in a nematic droplet

J. R. Kelly and P. Palffy-Muhoray
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242

~Received 3 October 1996!

Director fluctuations in nematic liquid crystals are readily analyzed in terms of the normal modes of the
director field. In this paper, we examine the dynamics of fluctuations in the radial director field of a spherical
nematic droplet in terms of its normal modes. We find independent twist-bend and splay-bend modes and
consider thermal excitations. The results may be useful for understanding light scattering by polymer dispersed
liquid crystals.@S1063-651X~97!06204-1#

PACS number~s!: 61.30.Cz
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I. INTRODUCTION

The scattering of light by condensed matter is due to s
tial variations of the dielectric permittivity. In nematic liqui
crystals, this is caused primarily by spatial variations of
order parameter. These inhomogeneities may be cause
external fields~such as surface interactions! and by thermal
fluctuations. Since director fluctuations are Goldsto
modes, long-wavelength fluctuations with large amplitud
are excited even at modest temperatures, and these ar
sponsible for the strong scattering and turbid appearanc
bulk nematic liquid crystals. Light scattering by bulk nema
ics has been studied extensively@1,2,4–6#. The spectrum of
director fluctuations in a planar geometry has been exam
@4#, with good agreement between theory and experim
More recently, director fluctuations have been analyzed
the case of a nematic liquid crystal confined to a cylindri
capillary @5#.

Polymer dispersed liquid crystal~PDLC! materials consist
of micrometer-sized nematic droplets dispersed in a poly
matrix. In the droplets, the director field is spatially no
uniform, and light scattering by these materials is due bot
the mismatch between the refractive indices of the polym
and the liquid crystal and to the spatial inhomogeneities
the director field. Thermally excited director fluctuations a
particularly important; these contribute significantly to d
namic light scattering@6#. In order to describe dynamic ligh
scattering by PDLCs, it is essential to understand the dyn
ics of director fluctuations. In this paper we discuss direc
dynamics in a spherical nematic droplet, with strong norm
anchoring at the surface, that is, with the director radia
aligned everywhere in the ground state. Although ot
ground-state configurations are possible@7#, the radial con-
figuration is realized frequently and it is amenable to sim
analysis. We ignore spatial variations in the degree of ori
tational order and describe the nematic liquid crystal in ter
of the director rather than the order parameter tensor.
also ignore the effects of flow and work in the one elas
constant approximation. We identify the normal modes
such a radial nematic droplet and calculate their thermal
plitudes and relaxation times. This allows the description
dynamic light scattering by a nematic liquid crystal drop
in PDLC materials.
551063-651X/97/55~4!/4378~4!/$10.00
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II. DIRECTOR DYNAMICS
IN A NONPLANAR GEOMETRY

In the Oseen-Frank formalism@8#, the free energyF of a
nematic liquid crystal depends on distortions of the direc
field n̂„r …. Explicitly,

F5E F~ n̂!d3r , ~1!

where the bulk free-energy densityF has the form

F~ n̂!5
1

2
K1~“•n̂!21

1

2
K2~ n̂•“3n̂!21

1

2
K3~ n̂3“3n̂!2

~2!

corresponding to the canonical deformations of splay, tw
and bend;n̂ is a unit vector. To obtain the equations
motion, it is necessary to describe the generalized thermo
namic force acting on the director. To this end, we write t
free energy in terms of the unnormalized fieldn5nn̂ and
consider variationse of the unnormalized fieldn(r ) such that
e vanishes on the sample boundaries. Th
n̂5n̂01(I2n̂0n̂0)e, where n̂0 is an arbitrary director field
about which variations are considered,I is the unit tensor of
rank 2, andn̂0n̂0 is a dyad. Substitution into Eq.~1! gives

F4F02E h̃~ n̂0!–e d3r , ~3!

where h̃5 2(dF/dn̂)(I2n̂n̂). Sincee is an unconstrained
variation, we regardh̃ as the thermodynamic force acting o
the director. We note that the functional derivativ
dF/dn̂52h, whereh is the molecular field introduced by d
Gennes@2# and h̃5h2(h–n̂)n̂. The quantityh–n̂ may be
interpreted as the Lagrange multiplier associated with
constraint thatn251. The condition for equilibrium is tha
h̃50 or h5(h–n̂)n̂ @2#.

Away from equilibrium, in the absence of flow, the the
modynamic force is balanced by a viscous force and
dynamics is described by

g
]n̂

]t
5h̃, ~4!
4378 © 1997 The American Physical Society
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whereg is a viscosity coefficient. This is our starting poin
and we note that it differs@3# from Ref. @2#.

The free-energy density in the one-elastic-constant
proximationK15K25K35K is

F5
1

2
K$~“•n̂!21~“3n̂!2% ~5!

and h5 K¹2n̂. This gives the equation of motion for th
director

g

K

]n̂

]t
5¹2n̂2~ n̂–¹2n̂!n̂ ~6!

in the one-constant approximation.

III. NORMAL MODES OF A SPHERICAL DROPLET
WITH RADIAL CONFIGURATION

A. Equations of motion

We consider a spherical nematic droplet of radiusr 0, with
a radial static equilibrium configurationn̂05 r̂ . Fluctuations
about the equilibrium configuration are described by the fi
d(r ) such thatn̂5n̂01d. Rigid homeotropic anchoring is
assumed both at the surface and at the origin, that
d(r 0)5d(0)50. Substitution into Eq.~6! gives the equation
of motion for the decay of the fluctuations,

g

K

]d

]t
5~¹2d!~ I2n̂0n̂0!2~ n̂0•¹

2n̂0!d. ~7!

Since for a normal mode in a dissipative syste
]d/]t52d/t to lowest order, this becomes

2k2d5~“2d!~ I2 r̂ r̂ !1
2

r 2
d, ~8!

wherek25g/tK. The normal modes are the eigenfunctio
of Eq. ~8!. We note thatd• r̂50 and we look for solutions o
the formd5R(r )G, whereG is a linear combination of vec
tor spherical harmonics@9# such that its radial component
zero. We find the solutions

Glm
~1!5X lm~u,f!5

1

Al ~ l11!
F2mYl

m

sinu
û2

i ]Yl
m

]u
f̂G ~9!

and

Glm
~2!5Z lm~u,f!5

1

Al ~ l11!
F i ]Yl

m

]u
û2

mYl
m

sinu
f̂G , ~10!

whereX lm andZ lm are orthonormal, andR(r ) must satisfy

]2R

]r 2
1
2

r

]R

]r
1S k22 l ~ l11!22

r 2 DR50. ~11!

The solution forR(r ) is the spherical Bessel function o
ordern5Al ( l11)27/4, that is,
p-

d

is,

Rnl~r !5S rr 0D
21/2

Jn~knlr !, ~12!

where the eigenvalueknl is determined from the requiremen
thatJn(knlr 0)50 is thenth zero of the Bessel function. Th
elementary normal modes are therefore

dnlm
~1! 5Rnl~r !X lm~u,f! ~13!

and

dnlm
~2! 5Rnl~r !Z lm~u,f!, ~14!

with relaxation timestnl5g/Kknl
2 . Since the relaxation time

is independent ofm, the general normal modes are

dnl5Rnl~r !(
m

@AnlmX lm~u,f!1BnlmZ lm~u,f!#, ~15!

whereAnlm andBnlm are arbitrary constants subject to th
requirement thatdnl is real.

B. Normal mode distortions

It is convenient to separate the elementary normal mo
into the scalar partRnl(r ) and the vector fieldsX lm(u,f) and
Z lm(u,f). The functionRnl(r ) is shown in Fig. 1.

The real contributions from the vector fields are

X lm
r ~u,f!5cF2

mcosmf

sinu
Pl
m~cosu!û

1sinmf
]Pl

m~cosu!

]u
f̂G ~16!

FIG. 1. FunctionRnl(r );x21/2Jv(x), wherex5knlr , as a func-
tion of x. Here l55.
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and

Z lm
r ~u,f!5cF2sinmf

]Pl
m~cosu!

]u
û

2
mcosmf

sinu
Pl
m~cosu!f̂G , ~17!

where the normalization constant

c5A 2l11

p l ~ l11!

~ l2m!!

~ l1m!!
.

The vector fieldsXnlm
r (u,f) and Znlm

r (u,f) are shown in
Figs. 2~a! and 2~b!.

One can write Eq.~7! as

2knl
2 dnl5L̃dnl , ~18!

where L̃d5(¹2d)(I2n̂0n̂0)2(n̂0•¹
2n̂0)d. Since L̃ is a

Sturm-Liouville operator, the elementary normal modesdlm
form a complete orthogonal set. It is interesting to note t
“•@R(r )X lm#50; hence theX lm mode does not contribut
to the splay energy 1

2K1(“•n̂)
2. Similarly, n̂0•“

3@R(r )Z lm#50; hence theZ lm mode does not contribute t
the twist energy12K2(n̂•“3n̂)2. Thus there are two types o

FIG. 2. ~a! Splay-bend modeZ lm(u,f) for l55 andm53. ~b!
Twist-bend modeX lm(u,f) for l55 andm53.
t

modes, a twist-bend mode (X lm) and a splay-bend mod
(Z lm), as in the case of the planar geometry@4#.

C. Normal mode amplitudes

Amplitudes of the normal modes may be determined fr
the equipartition theorem. For a given distortion fieldd, the
free energyF is given by Eq.~3!.

F4F02E h̃~ n̂0!•dd3r . ~19!

If the distortion is from an equilibrium staten̂0, then h̃(n̂0)
50, but the free energyF energy may be written as

F4F02E h̃S n̂01 d

2D •dd3r . ~20!

To first order,h̃(n̂01d/2)5 1
2KL̃d, and the free energy be

comes

F4F02
1

2
KE ~L̃d!•dd3r . ~21!

Since the normal modes form a complete orthogonal set
arbitrary distortiond may be expressed in terms of these

d5 (
n,l ,m

Rnl~r !@AnlmX lm~u,f!1BnlmZ lm~u,f!#. ~22!

Since L̃dnl52knl
2 dnl @cf. Eq. ~18!#, we obtain at once for

such a deformation

F4F01
K

4 (
n,l ,m

knl
2 $uAnlmu21uBnlmu2%r 0

3Jn11
2 ~knlr 0!.

~23!

The equipartition theorem gives then the amplitudes

uAnlmu25uBnlmu25
2kT

Kr 0
3knl

2 Jn11
2 ~knlr 0!

. ~24!

For an arbitrary deformation, we note from Eq.~22! that

^d2&5
3kT

4pKr o
(
n,l ,m

@1/~r 0knl!
2#.

We write this as

^d2&5
3kT

4pKr0
(
n,l ,m

1

xnl
2 , ~25!

where xnl is the nth zero of Jn(x), where
n5Al ( l11)27/4. Although we do not have a closed-form
expression for the sum in Eq.~25!, we conjecture that
(n,l ,m1/xnl

2 5c(r 0 / lmol), wherelmol is a molecular length and
c is a dimensionless constant of order unity. This is ana
gous to the case of normal modes of a gas-filled rigid sph
where the sum equalsqmax52p/lmol andqmax is the cutoff in
q space. This giveŝ d2&5c(3kT/4pKlmol), that is, the
mean-squared amplitude of the fluctuations in real spac
independent of the droplet size.
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IV. SUMMARY

We have shown that in a spherical nematic droplet, wit
radial ground-state configuration, there exist two norm
modes: a twist-bend mode (X lm) and a splay-bend mod
(Z lm). These may be expressed simply in terms of vec
spherical harmonics; the relaxation time for both modes
function of the mode order. The amplitudes of thermally e
cited modes are given explicitly; we conjecture that t
mean-squared amplitude of director fluctuations is indep
dent of droplet size. Since the director dynamics is know
the structure factor for light scattering can be calculated. T
will be presented elsewhere.

The formalism presented here constrains the radial de
e

te

io
a
l

r
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-
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,
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ct

to be located at the center of the droplet. A more realis
model, not subject to this constraint, would describe the f
energy in terms of the dyadn̂n̂. A yet more realistic model
would use the full order parameter tensor description.
study of the tractability of these models is currently und
way.
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